Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526663

RESUMO

The suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, is a network structure composed of multiple types of γ-aminobutyric acid (GABA)-ergic neurons and glial cells. However, the roles of GABA-mediated signaling in the SCN network remain controversial. Here, we report noticeable impairment of the circadian rhythm in mice with a specific deletion of the vesicular GABA transporter in arginine vasopressin (AVP)-producing neurons. These mice showed disturbed diurnal rhythms of GABAA receptor-mediated synaptic transmission in SCN neurons and marked lengthening of the activity time in circadian behavioral rhythms due to the extended interval between morning and evening locomotor activities. Synchrony of molecular circadian oscillations among SCN neurons did not significantly change, whereas the phase relationships between SCN molecular clocks and circadian morning/evening locomotor activities were altered significantly, as revealed by PER2::LUC imaging of SCN explants and in vivo recording of intracellular Ca2+ in SCN AVP neurons. In contrast, daily neuronal activity in SCN neurons in vivo clearly showed a bimodal pattern that correlated with dissociated morning/evening locomotor activities. Therefore, GABAergic transmission from AVP neurons regulates the timing of SCN neuronal firing to temporally restrict circadian behavior to appropriate time windows in SCN molecular clocks.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Locomoção , Camundongos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
2.
Elife ; 92020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33269700

RESUMO

Previously, we found that in the mammalian retina, inhibitory inputs onto starburst amacrine cells (SACs) are required for robust direction selectivity of On-Off direction-selective ganglion cells (On-Off DSGCs) against noisy backgrounds (Chen et al., 2016). However, the source of the inhibitory inputs to SACs and how this inhibition confers noise resilience of DSGCs are unknown. Here, we show that when visual noise is present in the background, the motion-evoked inhibition to an On-Off DSGC is preserved by a disinhibitory motif consisting of a serially connected network of neighboring SACs presynaptic to the DSGC. This preservation of inhibition by a disinhibitory motif arises from the interaction between visually evoked network dynamics and short-term synaptic plasticity at the SAC-DSGC synapse. Although the disinhibitory microcircuit is well studied for its disinhibitory function in brain circuits, our results highlight the algorithmic flexibility of this motif beyond disinhibition due to the mutual influence between network and synaptic plasticity mechanisms.


Assuntos
Células Amácrinas/fisiologia , Inibição Neural , Plasticidade Neuronal , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica , Visão Ocular , Vias Visuais/fisiologia , Animais , Potenciais Evocados Visuais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Estimulação Luminosa , Receptores de GABA-A/deficiência , Receptores de GABA-A/genética , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Vias Visuais/citologia
3.
Mol Metab ; 29: 114-123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31668382

RESUMO

OBJECTIVE: Melanin-concentrating hormone (MCH) plays a key role in regulating energy balance. MCH acts via its receptor MCHR1, and MCHR1 deletion increases energy expenditure and locomotor activity, which is associated with a hyperdopaminergic state. Since MCHR1 expression is widespread, the neurons supporting the effects of MCH on energy expenditure are not clearly defined. There is a high density of MCHR1 neurons in the striatum, and these neurons are known to be GABAergic. We thus determined if MCH acts via this GABAergic neurocircuit to mediate energy balance. METHODS: We generated a Mchr1-flox mouse and crossed it with the Vgat-cre mouse to assess if MCHR1 deletion from GABAergic neurons expressing the vesicular GABA transporter (vGAT) in female Vgat-Mchr1-KO mice resulted in lower body weights or increased energy expenditure. Additionally, we determined if MCHR1-expressing neurons within the accumbens form part of the neural circuit underlying MCH-mediated energy balance by delivering an adeno-associated virus expressing Cre recombinase to the accumbens nucleus of Mchr1-flox mice. To evaluate if a dysregulated dopaminergic tone leads to their hyperactivity, we determined if the dopamine reuptake blocker GBR12909 prolonged the drug-induced locomotor activity in Vgat-Mchr1-KO mice. Furthermore, we also performed amperometry recordings to test whether MCHR1 deletion increases dopamine output within the accumbens and whether MCH can suppress dopamine release. RESULTS: Vgat-Mchr1-KO mice have lower body weight, increased energy expenditure, and increased locomotor activity. Similarly, restricting MCHR1 deletion to the accumbens nucleus also increased locomotor activity. Vgat-Mchr1-KO mice show increased and prolonged sensitivity to GBR12909-induced locomotor activity, and amperometry recordings revealed that GBR12909 elevated accumbens dopamine levels to twice that of controls, thus MCHR1 deletion may lead to a hyperdopaminergic state that mediates their observed hyperactivity. Consistent with the inhibitory effect of MCH, we found that MCH acutely suppresses dopamine release within the accumbens. CONCLUSIONS: As with established models of systemic MCH or MCHR1 deletion, we found that MCHR1 deletion from GABAergic neurons, specifically those within the accumbens nucleus, also led to increased locomotor activity. A hyperdopaminergic state underlies this increased locomotor activity, and is consistent with our finding that MCH signaling within the accumbens nucleus suppresses dopamine release. In effect, MCHR1 deletion may disinhibit dopamine release leading to the observed hyperactivity.


Assuntos
Neurônios GABAérgicos/metabolismo , Locomoção , Receptores de Somatostatina/metabolismo , Animais , Dopamina/metabolismo , Metabolismo Energético , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/metabolismo , Piperazinas/farmacologia , Receptores de Somatostatina/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
4.
Exp Neurol ; 289: 117-127, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956032

RESUMO

There is an emerging body of evidence that glycinergic and GABAergic synaptic inputs onto motor neurons (MNs) help regulate the final number of MNs and axonal muscle innervation patterns. Using mutant glutamate decarboxylase 67 (GAD67) and vesicular inhibitory amino acid transporter (VGAT) deficient mice, we describe the effect that deficiencies of presynaptic GABAergic and/or glycinergic release have on the post-synaptic somato-dendritic structure of motor neurons, and the development of excitatory and inhibitory synaptic inputs to MNs. We use whole-cell patch clamp recording of synaptic currents in E18.5 hypoglossal MNs from brainstem slices, combined with dye-filling of these recorded cells with Neurobiotin™, high-resolution confocal imaging and 3-dimensional reconstructions. Hypoglossal MNs from GAD67- and VGAT-deficient mice display decreased inhibitory neurotransmission and increased excitatory synaptic inputs. These changes are associated with increased dendritic arbor length, increased complexity of dendritic branching, and increased density of spiny processes. Our results show that presynaptic release of inhibitory amino acid neurotransmitters are potent regulators of hypoglossal MN morphology and key regulators of synaptic inputs during this critical developmental time point.


Assuntos
Tronco Encefálico/citologia , Glutamato Descarboxilase/deficiência , Neurônios Motores/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Animais , Animais Recém-Nascidos , Biotina/análogos & derivados , Biotina/farmacocinética , Espinhas Dendríticas/genética , Estimulação Elétrica , Eletroporação , Embrião de Mamíferos , Feminino , Glutamato Descarboxilase/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Técnicas de Patch-Clamp , Gravidez , Potenciais Sinápticos/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/farmacologia
5.
eNeuro ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022629

RESUMO

The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGAT(flox/flox) mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT(-/-) mice were the same as Cx57-VGAT(+/+) controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT(-/-) mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT(-/-) mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors.


Assuntos
Canais de Cálcio/metabolismo , Retroalimentação Fisiológica/fisiologia , Células Fotorreceptoras/metabolismo , Células Horizontais da Retina/fisiologia , Deleção de Sequência/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Animais , Conexinas/genética , Conexinas/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Ácido Caínico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Muscimol/farmacologia , Retina/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Vias Visuais/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
6.
J Neurosci ; 35(38): 13219-32, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400950

RESUMO

Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear. Here, we selectively eliminated the directional tuning of inhibitory inputs onto DSGCs by disrupting GABA release from the presynaptic interneuron starburst amacrine cell in the mouse retina. We found that, even without directionally tuned inhibition, direction selectivity can still be implemented in a subset of On-Off DSGCs by direction-selective excitation and a temporal offset between excitation and isotropic inhibition. Our results therefore demonstrate the concerted action of multiple synaptic mechanisms for robust direction selectivity in the retina. Significance statement: The direction-selective circuit in the retina has been a classic model to study neural computations by the brain. An important but unresolved question is how direction selectivity is implemented by directionally tuned excitatory and inhibitory mechanisms. Here we specifically removed the direction tuning of inhibition from the circuit. We found that direction tuning of inhibition is important but not indispensable for direction selectivity of DSGCs' spiking activity, and that the residual direction selectivity is implemented by direction-selective excitation and temporal offset between excitation and inhibition. Our results highlight the concerted actions of synaptic excitation and inhibition required for robust direction selectivity in the retina and provide critical insights into how patterned excitation and inhibition collectively implement sensory processing.


Assuntos
Células Amácrinas/fisiologia , Orientação/fisiologia , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Células Amácrinas/citologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Dendritos/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Retina/citologia , Estatísticas não Paramétricas , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/farmacologia
7.
Brain Struct Funct ; 220(1): 525-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276495

RESUMO

During mid to late embryonic development (E13 to birth in mice), the neuromotor system is refined by reducing motor neuron (MN) numbers and establishing nascent synaptic connections onto and by MNs. Concurrently, the response to GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition. Our previous studies on mutant mice lacking glycinergic transmission or deficient in GABA suggests that altered MN activity levels during this developmental period differentially regulates MN survival and muscle innervation for respiratory and non-respiratory motor pools. To determine if combined loss of GABAergic and glycinergic transmission plays a similar or exaggerated role, we quantified MN number and muscle innervation in two respiratory (hypoglossal and phrenic) and two locomotor (brachial and lumbar) motor pools, in mice lacking vesicular inhibitory amino acid transporter, which display absent or severely impaired GABAergic and glycinergic neurotransmission. For respiratory MNs, we observed significant decreases in MN number (-20 % hypoglossal and -36 % phrenic) and diaphragm axonal branching (-60 %). By contrast, for non-respiratory brachial and lumbar MNs, we observed increases in MN number (+62 % brachial and +84 % lumbar) and axonal branching for innervated muscles (+123 % latissimus dorsi for brachial and +61 % gluteal for lumbar). These results show that combined absence of GABAergic and glycinergic neurotransmission causes distinct regional changes in MN number and muscle innervation, which are dependent upon the motor function of the specific motor pool.


Assuntos
Locomoção/genética , Neurônios Motores/fisiologia , Junção Neuromuscular/genética , Respiração/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Fatores Etários , Animais , Tronco Encefálico/citologia , Tronco Encefálico/embriologia , Contagem de Células , Sobrevivência Celular , Diafragma/inervação , Embrião de Mamíferos , Feminino , Glicina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Junção Neuromuscular/embriologia , Gravidez , Receptores Colinérgicos/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/metabolismo
8.
Neuroscience ; 288: 86-93, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25545713

RESUMO

Inhibitory neurotransmitters, γ-aminobutyric acid (GABA) and glycine, are transported into synaptic vesicles by the vesicular GABA transporter (VGAT). Glutamate decarboxylase (GAD) is a GABA-synthesizing enzyme and two isoforms of GAD, GAD65 and GAD67 are encoded by two independent genes. There was virtually no GABA content in GAD65/GAD67 double knockout (GADs DKO) mouse brains. Neither GABAergic nor glycinergic inhibitory postsynaptic currents were almost detected in VGAT knockout (KO) mouse cultured neurons and spinal cords. GAD67 KO and VGAT KO mice displayed developmental abnormalities, cleft palate and omphalocele, suggesting that GABAergic transmission is involved in palate and abdominal wall formations. However, the incidence and severity of both failures in GAD67 KO mice were lower and less than those in VGAT KO mice. These results raise the possibility that GABAergic transmission mediated by GAD65-produced GABA and/or glycinergic transmission contributed to both palate and abdominal wall formations. However, it still remains unclear whether GABAergic transmission mediated by GAD65 and glycinergic transmission contribute to those formations. Here, to answer these questions, we generated GADs DKO mice and compared the phenotypes of GADs DKO mice with those of GAD67 KO and VGAT KO mice. Our anatomical analyses demonstrated that the incidence of cleft palate and omphalocele in GAD67 KO mice was 65.8% and 58.9%, respectively, but the incidence of both phenotypes in GADs DKO and VGAT KO mice was 100%. The severity of cleft palate and omphalocele was evaluated by elevation of palate shelves and size and liver inclusion of omphalocele, respectively. We observed that the phenotypes of cleft palate and omphalocele in GADs DKO mice were more and less severe than those in GAD67 KO and VGAT KO mice, respectively. These results indicate the significant contribution of not only GAD65-mediated GABAergic but also glycinergic transmissions to both palate and abdominal wall formations.


Assuntos
Fissura Palatina/enzimologia , Glutamato Descarboxilase/deficiência , Hérnia Umbilical/enzimologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Animais , Glutamato Descarboxilase/genética , Arcada Osseodentária/embriologia , Arcada Osseodentária/enzimologia , Cifose/diagnóstico por imagem , Cifose/enzimologia , Camundongos Knockout , Radiografia , Índice de Gravidade de Doença , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
9.
J Neurosci ; 34(40): 13314-25, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274811

RESUMO

Impaired neurogenesis in the adult hippocampus has been implicated in AD pathogenesis. Here we reveal that the APP plays an important role in the neural progenitor proliferation and newborn neuron maturation in the mouse dentate gyrus. APP controls adult neurogenesis through a non cell-autonomous mechanism by GABAergic neurons, as selective deletion of GABAergic, but not glutamatergic, APP disrupts adult hippocampal neurogenesis. APP, highly expressed in the majority of GABAergic neurons in the dentate gyrus, enhances the inhibitory tone to granule cells. By regulating both tonic and phasic GABAergic inputs to dentate granule cells, APP maintains excitatory-inhibitory balance and preserves cognitive functions. Our studies uncover an indispensable role of APP in the GABAergic system for controlling adult hippocampal neurogenesis, and our findings indicate that APP dysfunction may contribute to impaired neurogenesis and cognitive decline associated with AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Interneurônios/fisiologia , Neurogênese/fisiologia , Fatores Etários , Precursor de Proteína beta-Amiloide/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Células Cultivadas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Nestina/genética , Nestina/metabolismo , Neurogênese/genética , Bloqueadores dos Canais de Sódio/farmacologia , Transmissão Sináptica/genética , Tetrodotoxina/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência
10.
Cell Metab ; 18(4): 588-95, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24093681

RESUMO

Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/deficiência , Neuropeptídeo Y/genética , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
11.
Nature ; 485(7400): 646-50, 2012 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-22660328

RESUMO

Neural activity during development critically shapes postnatal wiring of the mammalian brain. This is best illustrated by the sensory systems, in which the patterned feed-forward excitation provided by sensory organs and experience drives the formation of mature topographic circuits capable of extracting specific features of sensory stimuli. In contrast, little is known about the role of early activity in the development of the basal ganglia, a phylogenetically ancient group of nuclei fundamentally important for complex motor action and reward-based learning. These nuclei lack direct sensory input and are only loosely topographically organized, forming interlocking feed-forward and feed-back inhibitory circuits without laminar structure. Here we use transgenic mice and viral gene transfer methods to modulate neurotransmitter release and neuronal activity in vivo in the developing striatum. We find that the balance of activity between the two inhibitory and antagonist pathways in the striatum regulates excitatory innervation of the basal ganglia during development. These effects indicate that the propagation of activity through a multi-stage network regulates the wiring of the basal ganglia, revealing an important role of positive feedback in driving network maturation.


Assuntos
Gânglios da Base/embriologia , Gânglios da Base/fisiologia , Neostriado/embriologia , Neostriado/fisiologia , Vias Neurais/fisiologia , Sinapses/metabolismo , Animais , Gânglios da Base/citologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Neostriado/citologia , Inibição Neural , Tálamo/citologia , Tálamo/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Neuron ; 50(4): 575-87, 2006 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-16701208

RESUMO

The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.


Assuntos
Glicina/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Glutamato Descarboxilase/metabolismo , Immunoblotting , Isoenzimas/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Fenótipo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...